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Abstract—The belief propagation algorithm is a state of the art
decoding technique for a variety of linear codes such as LDPC
codes. The iterative structure of this algorithm is reminiscent
of a neural network with multiple layers. Indeed, this similarity
has been recently exploited to improve the decoding performance
by tuning the weights of the equivalent neural network. In this
paper, we introduce a new network architecture by increasing the
number of variable-node layers, while keeping the check-node
layers unchanged. The changes are applied in a manner that
the decoding performance of the network becomes independent
of the transmitted codeword; hence, a training stage with only
the all-zero codeword shall be sufficient. Simulation results on a
number of well-studied linear codes, besides an improvement in
the decoding performance, indicate that the new architecture is
also simpler than some of the existing decoding networks.

Index Terms—Belief propagation, linear codes, neural net-
works.

I. INTRODUCTION

In recent years, deep learning has marked significant im-
provements in a wide range of applications such as speech
processing [1], playing games [2], and image recognition [3].
While the success of deep learning is primarily reported in
complex classification and reconstruction tasks that lack a
well-defined mathematical model, it is being deployed even in
settings with studied classical models. One such example is the
decoding of linear binary codes. The latter is one of the oldest
problems in information theory, and could be considered as a
classification problem with exponentially many classes (either
the number of codewords or the number of distinguishable
error patterns).

By casting the decoding challenge as a deep learning
problem, we essentially need a neural network to learn how
to optimally decode an arbitrary vector, after being trained.
Ideally, the training data shall include the space of all code-
words. Nevertheless, due to the exponential increase of the
number of codewords in terms of the code length, having
access to such a big training dataset is not feasible in moderate
to large code lengths. Besides, the neural network that can
efficiently decode such codes shall consist of a large number
of parameters. Consequently, a naive neural network decoder
is only applicable to codes with short lengths [4]–[7].

The belief propagation (BP) algorithm is a generic iterative
decoding process that takes into account the Tanner graph
of the code. The Tanner graph consists of two categories of
nodes: check nodes and variable nodes. The BP algorithm is
a message passing technique in which certain messages are
iteratively sent along the edges between the check and variable

nodes. This algorithm is known to be optimal when the Tanner
graph is a tree (which almost never happens) [8], though it has
acceptable performance even for non-tree Tanner graphs [9].
This algorithm is considered as the state of the art decoder for
binary codes such as LDPC codes that do not have short cycles
in their Tanner graphs.

The iterative nature of the BP algorithm is recently in-
terpreted as a neural network structure in [10], [11]. The
layers of the neural network are associated with the messages
sent by either the check nodes or the variable nodes. Hence,
the number of layers is roughly twice the number of BP
iterations. The advantage of the latter interpretation is that
weights in the neural network can now be tuned to yield the
optimal performance, in contrast to the standard BP that uses
universally fixed weights and structure for all codes. To avoid
the need for huge training datasets, certain restrictions are
applied to the structure of the neural network in [10], [11] that
makes the training (and the outcome of the neural network)
independent of the original codeword. As a result, only noisy
versions of the zero codeword are sufficient for the training
stage. A similar approach is devised in [12] for the min-
sum algorithm and the effect of the quantization (implemented
using a neural network) is studied in [13]. An extension of
the approach to hyper-graph-networks is introduced in [14]
with a dynamically hard training process and considerably
more parameters. To meet the computational cost of the latter
hypernetwork, a hardware implementation is proposed in [15].

In this paper, we introduce a new neural network structure
for decoding linear binary codes that performs superior to [10],
[11] without adding computational complexity. More specifi-
cally, our structure consists of multiple (mainly two) variable-
layers in succession before the check-layers. We further impose
the same constraints as in [10] to avoid the need for large
training datasets; i.e., the training of the proposed network
is accomplished solely via the noisy versions of the zero
codeword.

The rest of the paper is organized as follows. In Section
II, we describe the BP algorithm and its equivalent neural
network. Then, in Section III, we propose our structure and
its training details. We validate our method via simulation
results in Section IV. The results indicate superiority of the
performance of the proposed method compared to the existing
methods in the literature. Finally, we conclude the paper in
Section V.
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Fig. 1. The Tanner graph of the (7, 4) Hamming code.

II. BACKGROUND

Before proposing our method, we briefly review the belief
propagation algorithm, which is used for decoding linear codes.
Then we describe neural network form of this algorithm.

A. Tanner Graph

For a (n, k) linear code, the Tanner graph of the code is
a bipartite graph that consists of n variable nodes and n − k
check nodes [16]. The i-th check node is connected to the j-th
variable node, if the (i, j) element in the parity check matrix
of the code is equal to one. As an illustrative example, the
Tanner graph of the (7, 4) Hamming code with parity check
matrix

H =




1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1


 .

is shown in Fig. 1.

B. Belief Propagation Decoding

The BP decoding is an iterative technique over the Tanner
graph of the code [17]–[19]. In each iteration of the BP algo-
rithm, probability estimates or log-likelihood ratios (messages)
are communicated over the graph between variable and check
nodes.

By denoting the channel output (noisy codeword) as y and
the original codeword as x, the initialization for the log-
likelihood ratios (LLR) in the variable nodes is given by

µv = log

(
pr(xv = 1| yv)

pr(xv = 0| yv)

)
, (1)

where v stands for the bit index. Next, the LLRs are iteratively
sent back and forth between the variable and check nodes.

The message µ(l)
v,c in the l-th iteration of the BP algorithm

that is sent from variable node v to the check node c is given
by

µ(l)
v,c = µv +

∑

c′∈Cv\{c}

µ
(l−1)
c′,v , (2)

where Cv represents the set comprising of all check nodes
incident to the variable node v and µ

(−1)
c,v = 0 at l = 0.

Similarly, the message µ
(l)
c,v in the second phase of the l-th

iteration that is sent from check node c to variable node v is

µ(l)
c,v = 2Arctanh


 ∏

v′∈Vc\{v}

tanh

(
µ
(l)
v′,c

2

)
 , (3)

where Vc is the set of all variable nodes connected to the check
node c.

Finally, the estimates of posterior LLRs after the l-th itera-
tion are computed using

o(l)v = µv +
∑

c′∈Cv

µ
(l)
c′,v, (4)

C. Deep Neural Belief Propagation

Here, we describe the deep network structure of [10], [11]
that mimics the BP algorithm. With the weights incorporated
in this structure, the network is able to generate the exact
output of the BP algorithm (no tuning of the weights), or even
generate better results by tuning the weights. While we can still
consider the neural network as a message passing approach on
the Tanner graph, the effective messages are no longer the same
as the weight-less case. Indeed, the messages in (2) and (3) are
updated as

µ(l)
v,c = tanh

(
1

2

(
b(l)v,cµv +

∑

c′∈Cv\{c}

ω
(l)
v,c,c′µ

(l−1)
c′,v

))
, (5)

and

µ(l)
c,v = 2Arctanh

( ∏

v′∈Vc\{v}

µ
(l)
v′,c

)
, (6)

respectively. Note that b(l)v,cs and ω
(l)
v,c,c′s are the parameters

(weights) introduced by the neural network; if they are all set
to 1, we obtain the classical BP algorithm. In a similar way,
the LLR estimates in (4) are updated via

ov = σ

(
boutv µv +

∑

c′∈Cv

ωout
c′,vµ

(l)
c′,v

)
, (7)

where σ(·) is a sigmoid function converting the LLRs into
probabilities.

The number of nodes in each hidden layer of the neural
network equals the number of edges in the Tanner graph;
for instance, each hidden layer in the neural network of
the Hamming code in Fig. 1 has 12 nodes. Based on the
message type generated by each layer, it is called variable-
layer (referring to equation (5)), check-layer (referring to
equation (6)) or marginal-layer (referring to equation (7)). As
the nodes in each layer represent edges in the Tanner graph,
the connections between consecutive layers are determined
based on the adjacency of the edges in the Tanner graph;
i.e., two nodes in consecutive layers of variable-layer and
check-layer (check-layer and variable-layer) are connected if
the corresponding edges in the Tanner graph share a vertex in
variable nodes (check nodes). It is not difficult to show that



the message passing symmetry condition of [18] is fulfilled in
this network. As a result, the network could be trained based
on the noisy versions of only a single codeword.

III. PROPOSED METHOD

In this section, we introduce a new neural architecture for
decoding that both improves the performance in terms of the
bit error rate (BER) and reduces the computational complexity
of decoding with respect to the competing methods. This new
network is easily trainable and satisfies the message passing
symmetry conditions. Hence, it can be trained with only the
noisy versions of the zero codeword.

A. Multi variable-layer network (MVN)

We propose to replace the variable-layers with multiple
(oftentimes 2) cascaded copies of a variable-layer. We call
the proposed neural decoder “multi variable-layer network
(MVN)”. For instance, by cascading two variable-layers in l-
th iteration, equations (2), (3), and (4) are replaced with the
following equations

For l = 0:
µ(0)
v,c = µv, (8)

µ(0)
c,v = 2Arctanh


 ∏

v′∈Vc\{v}

tanh

(
µ
(0)
v′,c

2

)
 , (9)

o(0)v = µv +
∑

c′∈Cv

ω
(0)
c′,vµ

(0)
c′,v, (10)

and for l ≥ 1:

µ
(l)
v,ṽ,c = tanh


1

2


b(l)v,cµv +

∑

c′∈Cv\{c}

ω
(l)
v,c,c′µ

(l−1)
c′,v,ṽ




 ,

(11)

µ
(l)
ṽ,c,v = tanh


1

2


b̃(l)v,cµv +

∑

c′∈Cv\{c}

ω̃
(l)
v,c,c′µ

(l)
v,ṽ,c′




 ,

(12)

µ
(l)
c,v,ṽ = 2Arctanh


 ∏

v′∈Vc\{v}

µ
(l)
ṽ,c,v′


 , (13)

o(l)v = µv +
∑

c′∈Cv

ω
(l)
c′,vµ

(l)
c′,v,ṽ, (14)

where µ(0)
c′,v,ṽ = µ

(0)
c,v , and the variables in the above equations

are depicted in Fig. 2(a).
As described in Section II, the BP algorithm is an iterative

technique that each iteration consists of two parts. In the first
part, messages computed in variable nodes are sent to check
nodes and in the second part, updated messages in check nodes
are sent back to variable nodes. In our proposed MVN, the first
part is modified as the number of variable-layers increases. In
particular, except for the first iteration, we apply two variable-
layers both consisting of weights. While the first variable-layer

receives its messages from a check-layer (and acts as before),
the second variable-layer acts on the received messages from
the first variable-layer. However, in terms of the action, the
second layer pretends that the messages are received from a
check-layer and are to be sent to the next check-layer.

We should highlight that the number of nodes in each hidden
layer of MVN equals the number of edges in the Tanner graph.
The connections among the nodes of neighboring layers, are
determined based on the adjacency of the corresponding edges
in the Tanner graph. In particular, the node i in the l-th layer is
connected to the node j in the l+ 1-th layer if the edges i and
j in the Tanner graph share a vertex of the type of the l+ 1-th
layer; more precisely, if the l + 1-th layer is a variable-layer,
the shared vertex shall be a variable node, and if the l + 1-th
layer is a check-layer, the shared vertex shall be a check node.

It can be shown that this new architecture preserves the
message passing symmetry condition in [18] since we repeat a
process that itself fulfills the symmetry condition [10]. Thus, its
performance is independent of the transmitted codewords and
it can be trained with noisy versions of the zero codeword.

It should be noted that it is possible to use different numbers
of variable-layers in each iteration. For example, we could have
a network with three iterations which is consist of one variable-
layer in the first iteration, three variable-layers in the second
iteration, and two variable-layers in the third iteration.

We consider the cross entropy multi-loss function [11], [14]
for training the proposed neural network:

Γ = − 1

N

L∑

i=a

N∑

v=1

xv log
(
o(i)v

)
+ (1− xv) log

(
1− o(i)v

)

(15)
where xv = 0, a ∈ {0, 1}, and o

(i)
v is the output of i-th

iteration, defined in (14) and (10).

IV. EXPERIMENTS

We used Tensorflow environment in order to implement
our method and applied it on BCH(127,99), BCH(127,64),
BCH(63,36) and BCH(63,45) codes. First, we present simula-
tions results for codes with length 127 and then for the codes
with length 63.

A. Results for BCH code with N = 127

The training dataset was generated by sending zero code-
word through additive white Gaussian noise (AWGN) channel.
The signal-to-noise-ratio (SNR) of the channel was varied
from 1 dB to 8 dB. Each mini-batch included 40 noisy code
samples constructed from 5 codewords per SNR. Moreover,
parity check matrices based on [20] were used to form the
connections between nodes in the network. For training the
network, the RMS-Prop optimizer [21] with learning rate of
0.003 was utilized. Our designed networks for BCH(127,99)
and BCH(127,64) consist of three iterations with two consec-
utive variable-layers. For BCH(127,99), the parameter a in
(15) was set to 0 and ω

(l)
c′,vs in (14) were not trained. For

BCH(127,64), the parameter a in (15) was set to 0 and ω(l)
c′,vs

in (14) only for the last iteration, i.e., l = 3, were trained.
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Fig. 2. (a) A diagram of MVN architecture for BCH(7,4) with 3 iterations. The last two iterations have two variable-layers. (b) The Tanner graph of BCH(7,4)
code.

Figures 4 and 5 illustrate results for BCH(127,99) and
BCH(127,64). By using three double variable-layers, we can
eliminate two complex check-layers that include many multi-
plications. Comparing to [11], we reduce the BER by factors
up to 3.54 and 6.3, for BCH(127,99) and BCH(127,64),
respectively.

Figures 3 (a), (b) depict the total number of trained weights
and multiplications that are used for decoding one codeword
with our method and the proposed networks in [11]. Multiplica-
tions are costly in hardware implementation and it is important
to reduce the number of multiplications. Figures 3 (a), (b)
show that the number of trained weights and the number of
multiplications are reduced with respect to the ones in [11]. It
is noteworthy to mention that two consecutive variable-layers’
weights and biases were trained for BCH(127,99) code and
two consecutive variable-layers’ weights and biases, and final
marginal-layer’s weights were trained for BCH(127,64) code.

B. Results for BCH with N = 63

The training dataset was again generated from noisy versions
of the zero codeword with the following values of SNR:
{1, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8} dB. Each mini-batch in-
cluded 120 noisy code samples constructed from 10 codewords
per SNR. Moreover, parity check matrices based on [20] were
used. For BCH(63,45), hidden layers consisted of five iterations
in which the first four iterations had double variable-layers and
the last one had a single variable-layer. For the BCH(63,36)
code, hidden layers consisted of five iteration in which the
first three iterations had double variable-layers and the last
two iterations had a single variable-layer. For both BCH(63,45)

and BCH(63,36), the parameter a in (15) was set to 1. For the
training of these networks, RMS-Prop optimizer was utilized
with learning rate of 0.001.

Figures 6 and 7 present the results for BCH(63,45) and
BCH(63,36), respectively. As it is observed, the BER is re-
duced by a factor up to 5.25 and 2.12 compared to [11], for
BCH(63,45) and BCH(63,36), respectively. Moreover, accord-
ing to Fig. 3 (c), (d), the number of weights and multiplications
in our network are slightly higher than the ones in [11]
and significantly less than the ones of [14]. In Table I, the
negative natural logarithm of BER is reported for SNR=4, 5, 6
dB for our proposed network and the two Hyper-networks
(small f and large f ) proposed in [14]. For BCH(63,36),
our proposed network performs better than the Hyper-network
(small f ) [14] and Hyper-network (large f ) [14]. Furthermore,
for BCH(63,45), the performance of our proposed network is
better than Hyper-network (large f ) [14] and worse than Hyper-
network (small f ) [14].

Overall, the number of weights in the proposed networks
for BCH(63,45) and BCH(63,36) is slightly higher than the
networks proposed in [11], but they improve the BER with
respect to [11]. Although Hyper-networks [14] improve the
performance of [11], they have dynamically hard training
process as mentioned in [14] while MVN is easily trainable
due to the simplicity of the structure. Furthermore, the BER of
our proposed network is less than the ones of Hyper-networks
for BCH(63,36).
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Fig. 3. The number of trained weights and multiplications between [11] and double-variable network for (a) BCH(127,99) and (b) BCH(127,64). The number
of trained weights and multiplications between [11], [14], and double-variable network for (c) BCH(63,36) and (d) BCH(63,45).

TABLE I
THE NEGATIVE NATURAL LOGARITHM OF BIT ERROR RATE (BER) FOR THREE SNRS 4, 5, 6 DB OF OUR METHOD AND PROPOSED NETWORKS IN [14].

HIGHER IS BETTER.

method (smallf ) [14] (largef ) [14] MVN
SNR 4 5 6 4 5 6 4 5 6

BCH(63,36) 3.96 5.35 7.20 4.00 5.42 7.34 4.05 5.45 7.55
BCH(63,45) 4.48 6.07 8.45 4.41 5.91 7.91 4.49 5.96 8.08
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Fig. 4. BER results for BCH(127,99) code.

V. CONCLUSION

In this paper, we proposed a new architecture for the neural
decoders. The proposed architecture preserves the message
passing symmetry condition. Hence, its performance is inde-
pendent of the transmitted codewords and it could be trained
with merely noisy zero codewords. In this architecture, we
added multiple variable-layers in each iteration which results
in eliminating some complex check-layers. For instance, for
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Fig. 5. BER results for BCH(127,64) code.

BCH codes with N = 127, these added layers generally reduce
the number of trained weights since fewer iterations are needed
to get the same performance. Moreover, experimental results
show that multi variable-layer network performs better than
existing methods in terms of BER.
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